参考资料:
当有人和你阐明数据和观点的时候,你可以思考以下几个问题:
在表达中使用一堆假大空的词汇,每个词你都认识,组合在一起也仿佛说得都对,但是就是不知道对方在说什么。比如各种黑话指南:
编辑导语:大数据时代之下,信息繁杂多样,其中也充斥着大量的假话和谬论。怎么在纷繁复杂的信息里面,去伪存真,需要我们有一定的思辨能力,去识别信息中的垃圾信息。而如何识别辨别这些垃圾信息呢?本篇文章分析了如何识别垃圾信息的方法,感兴趣的话一起来看看吧。
什么是 p 值?
但是当我们放大横坐标的时候仔细一看,会发现,横坐标根本不是等分的。从最开始的每 5k 一个间隔,到后面 5百万一个单位。
比如你发现汽车儿童座椅销量变高,同时婴儿出生数量也在变高,是一个正相关的关系。但是不能说,因为儿童座椅销量变高了,所以导致婴儿出生率变高。这是逻辑是谬论。
作为律师你说,“等一等,法官你确定 DNA 匹配不是巧合?”
并不是说只要有这些词汇,就是垃圾信息。而是表达者通过一顿组合,让你不知道所云,只有空话的,肯定是垃圾信息。比如:
庭上法官拿出 DNA 检测报告表明,案发现场凶器上的 DNA 和你当事人 DNA 完全吻合。所以你的当事人才被指认。
你说,“别急,我们来画一个图。百万分之一的可能性表达的是所有人群里面,错误识别的可能性。但是我们这里应该要看的是,识别出来的结果里面,被误识别的可能性。”
图片来源于《成长边界》
你看到的信息能否被复制和重复,这也是结论是否科学的一个重要判断因素。要将一个研究发现认定为确凿的科学事实,它的可重复性至关重要。因为科学理论的一个重要定义就是可证伪性。
40华氏度引擎出问题的概率很高,参赛的结果可想而知。赛车队故事背后是 NASA 真实的案例。1986 年,在一次火箭发射事件中,NASA 的高层基于部分数据,对于密封火箭助推器一个连接处的 O 型圈失效可能性做出了判断。最终结果是,剧烈燃烧的气体直接从连接处冲向外部,“挑战者号”在升空 73 秒后就爆炸了,7 位宇航员全部丧生。
图片来源于 B 站公开课程
所以伪科学/信息的另外一个特征就是不可证伪。不管怎么解释它,都对的。
团队里面大部分人的判断都是要参赛。但是当我们把缺失的比赛数据补齐时,我们看到:
(假新闻 & 过度装饰)图片来源于 B 站公开课程
读数据的时候,当我们看到相关关系,需要继续提问或者反思,背后的原因是什么,是否还有其他可能性。
多年前,台湾地区有一个研究表明,家用电器的数量和避孕工具的使用最相关。但是你应该不会有这样的想法,在高中发放免费的烤箱以解决青年早孕的问题。因为这两个变量存在相关,但是没有因果关系。
图表也可以操控每个箱子的尺寸大小来表达他想要的意思。比如下文是华尔街一篇臭名昭著的报道。这张图乍一看中间部分的 y 值最大。
我们来说一个故事。假设你是一个律师,现在法官要审判一起杀人案件,而你的辩护人被指认谋杀。但是案发时,你当事人在蛋糕房里面做蛋糕,并不在案发现场。现在你要为他辩护。
可证伪性标准声明,一个理论要有用,对其所做的预测必须是具体的。它在告诉我们哪些事情会发生的同时,必须指出哪些事情不会发生。如果不会发生的事情确实发生了,我们就得到了一个明确的信号,这个理论有问题。
在这个不确定性极高的后疫情时代,多多提高自己对信息的辨别能力,更好的生活,从驳斥垃圾信息开始。
题图来自Unsplash,基于CC0协议
这次 Campaign 我们要以价格为抓手,横向打通品类覆盖,还要提高内容可复制性,注重投放颗粒度,覆盖消费升级到下沉市场的全域流量,发力打出一套组合拳。
这则小故事告诉你不能绝对相信 p 值。因为 p 值不是用来告诉你假设的正确性的。而是用来告诉你,在整个群体中检测错误的可能性有多大。
我们在研究一个现象的时候,会带着自己的预设偏见理解为,两个相关因素是因果关系。而相关关系之所以产生,可能是因为这两个变量都与某个甚至尚未被测量的第三变量相关。
越具体的预测在被证实后,给我们的触动越大。预测越具体,越精确,有可能证伪它的观察现象就越多。
平均数代表一个样本的平均水平。但是当你在查看平均值的时候要留意,样本里面是否有极值(极大值,极小值这些 outliers),如果有的话,平均值就会不准。此外,如果你的样本小,也容易产生更多极端的值。这个时候用中位数更合适。如下图:
文章来源:《大数据》 网址: http://www.dsjzz.cn/zonghexinwen/2022/0815/3492.html